If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.8x^2-24x-90=0
a = -0.8; b = -24; c = -90;
Δ = b2-4ac
Δ = -242-4·(-0.8)·(-90)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{2}}{2*-0.8}=\frac{24-12\sqrt{2}}{-1.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{2}}{2*-0.8}=\frac{24+12\sqrt{2}}{-1.6} $
| (3x+6)=4(2x-2) | | -2u+-10=8 | | 11x-2=11x+6 | | 12=12=-18+6b−18+6b | | 5y+12+8y-4=180 | | 9x+8=5-12 | | 16h=-128 | | -15x+10=-35 | | –2u+–10=8 | | 4x+8=9x-8 | | 13x+8+3x–15=88 | | 7-3/4x=19 | | G(1)=3x-4 | | 5t²+40t=0 | | 112=8{7-x} | | G(2)=-3x+1 | | b/13=-13 | | 5d4;d=-2 | | 10x-3+84+x=180 | | 3(-2r-4)+r=18 | | 6v+4=16+3v | | -5(x+3)+9=-6 | | z4-7=–3 | | 5y+12=8y-4 | | -29=n-12 | | 5y+12=8y+4 | | -7x-10=-8x-12 | | -6(v+4)=4v-74 | | -8+3j=-5 | | 6h+5=25 | | 15x1800=10x | | 6(v+4)=4v-74 |